SIGRAY Sigray XCITETM HIGH BRILIANCE X-RAY MICROBEAM SYSTEM

Sigray is proudly represented in Australia and New Zealand by AXT Pty. Ltd. 1/3 Vuko Pl., Warriewood NSW 2102 Australia T. +61 (0)2 9450 1359 F. +61 (0)2 9450 1365 W. www.axt.com.au E. info@axt.com.au

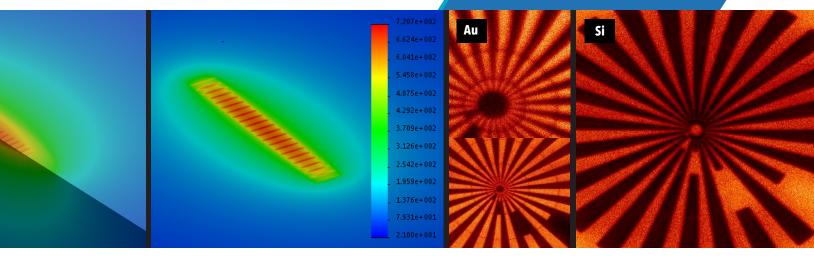
Sigray, Inc.

5750 Imhoff Drive, Suite I, Concord, CA 94520 USA P: +1-925-232-1991 F: +1-925-293-0733 sigray.com info@sigray.com Biological application: Hyperaccumulating seedling with elements of interest of K (Blue), Cl (Green), S (Red) shown and trace accumulation of Ni, Mn in roots detected

Sample provided by Dr. Antony van der Ent and Dr. Peter Erskine, The University of Queensland, Australia

Develop & Upgrade Laboratory X-ray Instruments with Synchrotron-like Capabilities

XCITE™ Microbeam System at a Glance


» **Patented x-ray source and optic technology** with outstanding x-ray flux densities of $10^{12} - 10^{13}/\text{mm}^2$ at the sample

» **Dual energy target design** for user-selectable choice of x-ray spectra, including access to novel characteristic energies and spectra using unorthodox target materials

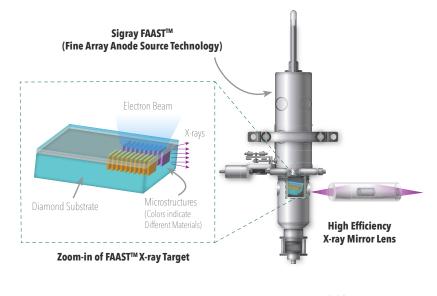
How will Sigray Improve Your System Performance?

Microbeam Type	Applications	Sigray Advantage	
Focusing	MicroXRF, X-ray Microscopy, MicroXRD, protein crystallography	Ultrafine spot size of $<\!10\mu m$ achieved at large working distances Achromatic single focal point for accurate quantification	
Collimating	SAXS, XRR, HRXRD	Highly collimated microbeam with < 0.3 mrad divergence	

Left (2): Finite Elemental Analysis demonstrating thermal advantages of microstructured target Right (3): Resolution measurements (<10 µm) from microXRF elemental maps using XCITE as the illumination beam system

Bring Synchrotron Beamline Capabilities to Your Lab Conduct Ground-breaking Research without Needing to Apply for Beamtime

The XCITETM is a patented source and optic combination designed to enable synchrotron performance to laboratory x-ray microanalytical techniques.


High Brightness X-ray Source with >50X Brightness

The Sigray FAASTTM x-ray source features an x-ray target comprised of fine metal microstructures encapsulated in a diamond substrate. Diamond provides unique thermal advantages, that, due to the high degree of contact between the microstructures and the substrate, allows substantially higher power loading for powerful flux (up to $10^{12} - 10^{13}$ x-rays/mm²) and access to new x-ray target materials.

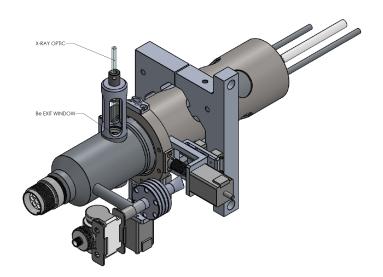
High Efficiency X-ray Mirror Lens

Sigray has developed a high precision and advanced manufacturing process capable of producing lenses with minimal slope errors and a reflecting surface smoothness on the order of single digit angstroms. These high performance lenses are achromatic and come in two configurations for the XCITE[™]: a minimal-divergence collimating lens and a high resolution focusing optic. The performance of the lens is far superior in performance than conventional polycapillary and monocapillary (tapered, elliptical, etc) optics.

Schematic of the XCITE[™] X-ray Microbeam Delivery System

* Patent: US 9/449,781B2

XCITE™: Specifications


Parameter	Specification			
Spot Size (Focused Beam Option)	<10 µm achromatic focal spot at 10-50 mm WD <300 µrad (beam stop used) 10 ¹² - 10 ¹³ / mm ²			
Divergence (Collimated Beam Option)				
Flux Density				
Source	Sigray FAAST™ Microstructured Source			
Target Material	Dual Energy Option. Includes selection from: Ti, Cu, Pt, Mo, W, and more. See table below to understand advantages of Dual Energy			
Target Substrate Material	Diamond			
Power Voltage Current	50 W 20 - 50 kV 4 mA			
X-ray Optic	Sigray Twin Paraboloidal X-ray Mirror Lens			
Transmission Efficiency	~80%			
Interior Coating	Platinum (increases NA of optic significantly)			

What is the Advantage of Dual Energy?

Example: Optimization of X-ray Fluorescence Signal

	1.5 (Al K)	3 (Rh L)	8 (Cu K)	11 (Pt L)	17.4 (Мо К)
В	17	2.3	0.06		
Ν	200	28	1.3		
F	1,270	190	10		
Na	4,400	700	40		
Al		2,000	132		
Р		5,000	350		
S		7,700	550		
CI		11,500	1500		
Ti			4,500		
Fe				7,000	1,200
Cu				12,000	2,500
Zn				15,000	3,500

The table above shows selected fluorescence cross-sections of various elements as a function of characteristic x-ray excitation energy. Note that cross-sections vary significantly depending on x-ray target material. XCITE™ provides access to new target materials (upon request) and dual target options so that results for each application is optimized.

5750 Imhoff Drive, Suite I, Concord, CA 94520 USA P: +1-925-232-1991 F: +1-925-293-0733 sigray.com info@sigray.com

REV20161027